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MATLAB Tutorial

This tutorial is available as a supplement to the textbook Fundamentals of Signals and Systems
Using Matlab by Edward Kamen and Bonnie Heck, published by Prentice Hall.  The tutorial covers
basic MATLAB commands that are used in introductory signals and systems analysis.  It is meant
to serve as a quick way to learn MATLAB and a quick reference to the commands that are used in
this textbook.  For more detailed information, the reader should consult the official MATLAB
documentation.  An easy way to learn MATLAB is to sit down at a computer and follow along with
the examples given in this tutorial and the examples given in the textbook.

The tutorial is designed for students using either the professional version of MATLAB (ver. 5.0)
with the Control Systems Toolbox (ver. 4.0) and the Signal Processing Toolbox (ver. 4.0), or using
the Student Edition of MATLAB (ver. 5.0).   The commands covered in the tutorial and their
descriptions are also valid for MATLAB version 4.0.
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1. MATLAB Basics 2
A. Definition of Variables 2
B. Definition of Matrices 4
C. General Information 6
D. M-files 6

2. Fourier Analysis 8
3. Continuous Time System Analysis 10

A. Transfer Function Representation 10
B. Time Simulations 12
C. Frequency Response Plots 14
D. Analog Filter Design 15
E. Control Design 16
F. State Space Representation 16

4. Discrete-Time System Analysis 18
A. Convolution 18
B. Transfer Function Representation 18
C. Time Simulations 19
D. Frequency Response Plots 21
E. Digital Filter Design 21
F. Digital Control Design 23
G. State Space Representation 25

5.  Plotting 26
6.  Loading and Saving Data 28



2

1. MATLAB Basics

MATLAB is started by clicking the mouse on the appropriate icon and is ended by typing exit or
by using the menu option.  After each MATLAB command, the "return" or "enter" key must be
depressed.

A. Definition of Variables

Variables are assigned numerical values by typing the expression directly, for example, typing

a = 1+2

yields: a =
    3

The answer will not be displayed when a semicolon is put at the end of an expression, for example
type a = 1+2;.

MATLAB utilizes the following arithmetic operators:

+ addition
- subtraction
* multiplication
/ division
^ power operator
’ transpose

A variable can be assigned using a formula that utilizes these operators and either numbers or
previously defined variables.  For example, since a was defined previously, the following
expression is valid

b = 2*a;

To determine the value of a previously defined quantity, type the quantity by itself:

b

yields: b =
    6

If your expression does not fit on one line, use an ellipsis (three or more periods at the end of the
line) and continue on the next line.

        c = 1+2+3+...
        5+6+7;
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There are several predefined variables which can be used at any time, in the same manner as user-
defined variables:

i sqrt(-1)
j sqrt(-1)
pi 3.1416...

For example,

y= 2*(1+4*j)

yields: y=
  2.0000 + 8.0000i

There are also a number of predefined functions that can be used when defining a variable.  Some
common functions that are used in this text are:

abs magnitude of a number (absolute value for real numbers)
angle angle of a complex number, in radians
cos cosine function, assumes argument is in radians
sin sine function, assumes argument is in radians
exp exponential function

For example, with y defined as above,

c = abs(y)
yields: c =

    8.2462

c = angle(y)
yields: c =

    1.3258

With a=3 as defined previously,

c = cos(a)
yields: c =

    -0.9900

c = exp(a)
yields: c =

    20.0855

Note that exp can be used on complex numbers.  For example, with y = 2+8i as defined
above,

c = exp(y)
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yields: c =
    -1.0751 + 7.3104i

which can be verified by using Euler’s formula:

c = e2cos(8) + je2sin(8)

B. Definition of Matrices

MATLAB is based on matrix and vector algebra; even scalars are treated as 1x1 matrices. 
Therefore, vector and matrix operations are as simple as common calculator operations. 

Vectors can be defined in two ways.  The first method is used for arbitrary elements:

v = [1 3 5 7];

creates a 1x4 vector with elements 1, 3, 5 and 7.  Note that commas could have been used in place
of spaces to separate the elements.  Additional elements can be added to the vector:

v(5) = 8;

yields the vector v = [1 3 5 7 8].  Previously defined vectors can be used to define a new
vector.  For example, with v defined above

a = [9 10];
b = [v a];

creates the vector b = [1 3 5 7 8 9 10].

The second method is used for creating vectors with equally spaced elements:

t = 0:.1:10;

creates a 1x101 vector with the elements 0, .1, .2, .3,...,10.  Note that the middle number defines the
increment.  If only two numbers are given, then the increment is set to a default of 1:

k = 0:10;

creates a 1x11 vector with the elements 0, 1, 2, ..., 10.

Matrices are defined by entering the elements row by row:

M = [1 2 4; 3 6 8];
creates the matrix
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M =










1 2 4

3 6 8

There are a number of special matrices that can be defined:

null matrix: M = [];

nxm matrix of zeros: M = zeros(n,m);

nxm matrix of ones: M = ones(n,m);

nxn identity matrix: M = eye(n);

A particular element of a matrix can be assigned:

M(1,2) = 5;

places the number 5 in the first row, second column.

In this text, matrices are used only in Chapter 12; however, vectors are used throughout the text. 
Operations and functions that were defined for scalars in the previous section can also be used on
vectors and matrices.  For example,

a = [1 2 3];
b = [4 5 6];
c = a + b

yields: c =
  5 7 9

Functions are applied element by element.  For example,

t = 0:10;
x = cos(2*t);

creates a vector x with elements equal to cos(2t) for t = 0, 1, 2, ..., 10.

Operations that need to be performed element-by-element can be accomplished by preceding the
operation by a ".".  For example, to obtain a vector x that contains the elements of x(t) = tcos(t) at
specific points in time, you cannot simply multiply the vector t with the vector cos(t).  Instead
you multiply their elements together:

t = 0:10;
x = t.*cos(t);
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C. General Information

Matlab is case sensitive so "a" and "A" are two different names.

Comment statements are preceded by a "%".

On-line help for MATLAB can be reached by typing help for the full menu or typing help
followed by a particular function name or M-file name.  For example, help cos gives help on
the cosine function.

The number of digits displayed is not related to the accuracy.  To change the format of the display,
type format short e for scientific notation with 5 decimal places, format long e for
scientific notation with 15 significant decimal places and format bank for placing two
significant digits to the right of the decimal.

The commands who and whos give the names of the variables that have been defined in the
workspace.

The command length(x) returns the length of a vector x and size(x) returns the
dimension of the matrix x.

D. M-files

M-files are macros of MATLAB commands that are stored as ordinary text files with the extension
"m", that is filename.m.  An M-file can be either a function with input and output variables or a list
of commands.  All of the MATLAB examples in this textbook are contained in M-files that are
available at the MathWorks ftp site. 

The following describes the use of M-files on a PC version of MATLAB.  MATLAB requires that
the M-file must be stored either in the working directory or in a directory that is specified in the
MATLAB path list.  For example, consider using MATLAB on a PC with a user-defined M-file
stored in a directory called "\MATLAB\MFILES".  Then to access that M-file, either change the
working directory by typing cd\matlab\mfiles from within the MATLAB command
window or by adding the directory to the path.  Permanent addition to the path is accomplished by
editing the \MATLAB\matlabrc.m file, while temporary modification to the path is accomplished
by typing path(path,’\matlab\mfiles’) from within MATLAB. 

The M-files associated with this textbook should be downloaded from
www.ece.gatech.edu/users/192/book/M-files.html and copied to a subdirectory named
"\MATLAB\KAMEN", and then this directory should be added to the path.  The M-files that come
with MATLAB are already in appropriate directories and can be used from any working directory. 

As example of an M-file that defines a function, create a file in your working directory named
yplusx.m that contains the following commands:



7

function z = yplusx(y,x)
z = y + x;

The following commands typed from within MATLAB demonstrate how this M-file is used:

x = 2;
y = 3;
z = yplusx(y,x)

MATLAB M-files are most efficient when written in a way that utilizes matrix or vector operations.
 Loops and if statements are available, but should be used sparingly since they are computationally
inefficient.  An example of the use of the command for is

for k=1:10,
   x(k) = cos(k);
end

This creates a 1x10 vector x containing the cosine of the positive integers from 1 to 10.  This
operation is performed more efficiently with the commands

k = 1:10;
x = cos(k);

which utilizes a function of a vector instead of a for loop.  An if statement can be used to define
conditional statements.  An example is

if(a <= 2),
  b = 1;
elseif(a >=4)
  b = 2;
else
  b = 3;
end

The allowable comparisons between expressions are >=, <=, <, >, ==, and ~=.

Several of the M-files written for this textbook employ a user-defined variable which is defined
with the command input.  For example, suppose that you want to run an M-file with different
values of a variable T.  The following command line within the M-file defines the value:

T = input(’Input the value of T: ’)

Whatever comment is between the quotation marks is displayed to the screen when the M-file is
running, and the user must enter an appropriate value.
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2. Fourier Analysis

Commands covered: dft
idft
fft
ifft
contfft

The dft command uses a straightforward method to compute the discrete Fourier transform.
Define a vector x and compute the DFT using the command

X = dft(x)

The first element in X corresponds to the value of X(0).  The function dft is available from the
MathWorks ftp site and is defined in Figure C.2 of the textbook.

The command idft uses a straightforward method to compute the inverse discrete Fourier
transform.  Define a vector X and compute the IDFT using the command

x = idft(X)

The first element of the resulting vector x is x[0].  The function idft is available at the
MathWorks ftp site and is defined in Figure C.3 of the textbook. 

For a more efficient but less obvious program, the discrete Fourier transform can be computed
using the command fft which performs a Fast Fourier Transform of a sequence of numbers.  To
compute the FFT of a sequence x[n] which is stored in the vector x, use the command

X = fft(x)

Used in this way, the command fft is interchangeable with the command dft.  For more
computational efficiency, the length of the vector x should be equal to an exponent of 2, that is 64,
128, 512, 1024, 2048, etc.  The vector x can be padded with zeros to make it have an appropriate
length.  MATLAB does this automatically by using the following command where N is defined to
be an exponent of 2:

X = fft(x,N);

The longer the length of x, the finer the grid will be for the FFT.  Due to a wrap around effect, only
the first N/2 points of the FFT have any meaning. 

The ifft command computes the inverse Fourier transform:

x = ifft(X);
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The FFT can be used to approximate the Fourier transform of a continuous-time signal as shown in
Section 6.6 of the textbook.  A continuous-time signal x(t) is sampled with a period of T seconds,
then the DFT is computed for the sampled signal.  The resulting amplitude must be scaled and the
corresponding frequency determined.  An M-file that approximates the Fourier Transform of a
sampled continuous-time signal is available from the ftp site and is given below:

function [X,w] = contfft(x,T);
[n,m] = size(x);
if n<m,
  x = x’;
end
Xk = fft(x);
N = length(x);
n = 0:N-1;
n(1) = eps;
X = (1-exp(-j*2*pi*n/N))./(j*2*pi*n/N/T).*Xk.’;
w = 2*pi*n/N/T;

The input is the sampled continuous-time signal x and the sampling time T.  The outputs are the
Fourier transform stored in the vector X and the corresponding frequency vector w.
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3. Continuous Time System Analysis

A. Transfer Function Representation

Commands covered: tf2zp
zp2tf
cloop
feedback
parallel
series

Transfer functions are defined in MATLAB by storing the coefficients of the numerator and the
denominator in vectors.  Given a continuous-time transfer function

H(s)  =  
B(s)

A(s)
Error! Switch argument not specified.

where B(s) = bMsM+bM-1s
M-1+...+b0 and A(s) = sN+aN-1s

N-1+...+a0.  Store the coefficients of B(s) and
A(s) in the vectors num = [bM bM-1 ... b0] and den = [1 aN-1 ... a0].  In this text,
the names of the vectors are generally chosen to be num and den, but any other name could be
used. For example,

H(s)  =  
2s+ 3

s + 4s + 53 2 Error! Switch argument not specified.

is defined by

num = [2 3];
den = [1 4 0 5];

Note that all coefficients must be included in the vector, even zero coefficients.

A transfer function may also be defined in terms of its zeros, poles and gain:

H(s)  =  
k(s- z )(s- z ) (s- z )

(s- p )(s- p ) (s- p )
1 2 m

1 2 n

K

K
Error! Switch argument not specified.

To find the zeros, poles and gain of a transfer function from the vectors num and den which
contain the coefficients of the numerator and denominator polynomials, type

[z,p,k] = tf2zp(num,den)

The zeros are stored in z, the poles are stored in p, and the gain is stored in k.  To find the
numerator and denominator polynomials from z, p, and k, type
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G(s)

G(s)

H(s)

unity feedback

feedback

-

-

[num,den] = zp2tf(z,p,k)

The overall transfer function of individual systems in parallel, series or feedback can be found using
MATLAB.  Consider block diagram reduction of the different configurations shown in Figure 1. 
Store the transfer function G in numG and denG, and the transfer function H in numH and
denH.

To reduce the general feedback system to a single transfer function, Gcl(s) = G(s)/(1+G(s)H(s)) type

[numcl,dencl] = feedback(numG,denG,numH,denH);

For a unity feedback system, let numH = 1 and denH = 1 before applying the above
algorithm.  Alternately, use the command

[numcl,dencl] = cloop(numG,denG,-1);

To reduce the series system to a single transfer function, Gs(s) = G(s)H(s) type

[nums,dens] = series(numG,denG,numH,denH);

To reduce the parallel system to a single transfer function, Gp(s) = G(s) + H(s) type

[nump,denp] = parallel(numG,denG,numH,denH);

(Parallel is not available in the Student Version.)
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G(s)

G(s)

H(s)

H(s)

series

parallel

B. Time Simulations

Commands covered: residue
step
impulse
lsim

The analytical method to find the time response of a system requires taking the inverse Laplace
Transform of the output Y(s).  MATLAB aides in this process by computing the partial fraction
expansion of Y(s) using the command residue.  Store the numerator and denominator
coefficients of Y(s) in num and den, then type

[r,p,k] = residue(num,den) 

The residues are stored in r, the corresponding poles are stored in p, and the gain is stored in k. 
Once the partial fraction expansion is known, an analytical expression for y(t) can be computed by
hand.

A numerical method to find the response of a system to a particular input is available in MATLAB.
 First store the numerator and denominator of the transfer function in num and den, respectively. 
To plot the step response, type

step(num,den)
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To plot the impulse response, type

impulse(num,den)

For the response to an arbitrary input, use the command lsim.  Create a vector t which contains
the time values in seconds at which you want MATLAB to calculate the response.  Typically, this is
done by entering

t = a:b:c;

where a is the starting time, b is the time step and c is the end time.  For smooth plots, choose b
so that there are at least 300 elements in t (increase as necessary).  Define the input x as a
function of time, for example, a ramp is defined as x = t.  Then plot the response by typing

lsim(num,den,x,t);

To customize the commands, the time vector can be defined explicitly and the step response can be
saved to a vector.  Simulating the response for five to six time constants generally is sufficient to
show the behavior of the system.  For a stable system, a time constant is calculated as 1/Re(-p)
where p is the pole that has the largest real part (i.e., is closest to the origin). 

For example, consider a transfer function defined by

H(s)  =  
2

s+ 2
4

The step response y is calculated and plotted from the following commands:

num = 2; den = [1 2];
t = 0:3/300:3;    % for a time constant of 1/2
y = step(num,den,t);
plot(t,y)

For the impulse response, simply replace the word step with impulse.  For the response to an
arbitrary input stored in x, type

y = lsim(num,den,x,t);
plot(t,y)
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C. Frequency Response Plots

Commands covered: freqs
bode
logspace
log10
semilogx
unwrap

To compute the frequency response H(ω) of a transfer function, store the numerator and
denominator of the transfer function in the vectors num and den.  Define a vector w that contains
the frequencies for which H(ω) is to be computed, for example w = a:b:c where a is the lowest
frequency, c is the highest frequency and b is the increment in frequency.  The command

H = freqs(num,den,w)

returns a complex vector H that contains the value of H(ω) for each frequency in w. 

To draw a Bode plot of a transfer function which has been stored in the vectors num and den,
type

bode(num,den)

To customize the plot, first define the vector w which contains the frequencies at which the Bode
plot will be calculated.  Since w should be defined on a log scale, the command logspace is
used.  For example, to make a Bode plot ranging in frequencies from 10-1 to 102, define w by

w = logspace(-1,2);

The magnitude and phase information for the Bode plot can then be found be executing:

[mag,phase] = bode(num,den,w);

To plot the magnitude in decibels, convert mag using the following command:

magdb = 20*log10(mag);

To plot the results on a semilog scale where the y-axis is linear and the x-axis is logarithmic, type

semilogx(w,magdb)

for the log-magnitude plot and type

semilogx(w,phase)
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for the phase plot.  The phase plot may contain jumps of ±2π which may not be desired.  To remove
these jumps, use the command unwrap prior to plotting the phase.

semilogx(w,unwrap(phase))

D. Analog Filter Design

Commands covered: buttap
cheb1ab
zp2tf
lp21p
lp2bp
lp2hp
lp2bs

MATLAB contains commands for various analog filter designs, including those for designing a
Butterworth filter and a Type I Chebyshev filter.  The commands buttap and cheb1ab are
used to design lowpass Butterworth and Type I Chebyshev filters, respectively, with cutoff
frequencies of 1 rad/sec.  For an n-pole Butterworth filter, type

[z,p,k] = buttap(n)

where the zeros of the filter are stored in z, the poles are stored in p and the gain of the filter is in
k.  For an n-pole Type I Chebyshev filter with Rp decibels of ripple in the passband, type

[z,p,k] = cheb1ab(n,Rp)

To find the numerator and denominator polynomials of the resulting filter from z, p and k; type

[b,a] = zp2tf(z,p,k)

where a contains the denominator coefficients and b contains the numerator coefficients. 
Frequency transformations from one lowpass filter to another with a different cutoff frequency, or
from lowpass to highpass, or lowpass to bandstop or lowpass to bandpass can be performed in
MATLAB.  These transformations can be used with either the Butterworth filters or the Chebyshev
filters.  Suppose b and a store the numerator and denominator of a transfer function of a lowpass
filter with cutoff frequency 1 rad/sec.  To map to a lowpass filter with cutoff frequency Wo and
numerator and denominator coefficients stored in b1 and a1, type

[b1,a1] = lp2lp(b,a,Wo)

To map to a highpass filter with cutoff frequency Wo, type

[b1,a1] = lp2hp(b,a,Wo)

To map to a bandpass filter with bandwidth Bw centered at the frequency Wo, type
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[b1,a1] = lp2bp(b,a,Wo,Bw)

To map to a bandstop filter with stopband bandwidth Bw centered about the frequency Wo, type

[b1,a1] = lp2bs(b,a,Wo,Bw)

E. Control Design

Commands covered: rlocus

Consider a feedback loop as shown in Figure 1 where G(s)H(s) = KP(s) and K is a gain and P(s)
contains the poles and zeros of the controller and of the plant.  The root locus is a plot of the roots
of the closed loop transfer function as the gain is varied.  Suppose that the numerator and
denominator coefficients of P(s) are stored in the vectors num and den.  Then the following
command computes and plots the root locus:

rlocus(num,den)

To customize the plot for a specific range of K, say for K ranging from 0 to 100, then use the
following commands:

K = 0:100;
r = rlocus(num,den,K);
plot(r,’.’)

The graph contains dots at points in the complex plane that are closed loop poles for integer values
of K ranging from 0 to 100.  To get a finer grid of points, use a smaller increment when defining
K, for example, K = 0:.5:100.  The resulting matrix r contains the closed poles for all of the
gains defined in the vector K.  This is particularly useful to calculate the closed loop poles for one
particular value of K.   Note that if the root locus lies entirely on the real axis, then using
plot(r,’.’) gives inaccurate results.

F. State Space Representation

Commands Covered: step
lsim
ss2tf
tf2ss
ss2ss

The standard state space representation is used in MATLAB, i.e.,

&x Ax Bu

y Cx

= +
=

5
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where x is nx1 vector, u is mx1, y is px1, A is nxn, B is nxm, and C is pxn.  The response of a
system to various inputs can be found using the same commands that are used for transfer function
representations: step, impulse, and lsim.  The argument list contains the A, B, C, and D
matrices instead of the numerator and denominator vectors.  For example, the step response is
obtained by typing:

[y,x,t] = step(A,B,C,D);

The states are stored in x, the outputs in y and the time vector, which is automatically  generated,
is stored in t.  The rows of x and y contain the states and outputs for the time points in t.  Each
column of x represents a state.  For example, to plot the second state versus time, type

plot(t,x(:,2))

To find the response of an arbitrary input or to find the response to initial conditions, use lsim. 
Define a time vector t and an input matrix u with the same number of rows as in t and the
number of columns equaling the number of inputs.  An optional argument is the initial condition
vector x0.  The command is then given as

[y,x] = lsim(A,B,C,D,u,t,x0);

You can find the transfer function for a single-input/single-output (SISO) system using the
command:

[num,den] = ss2tf(A,B,C,D);

The numerator coefficients are stored in num and the denominator coefficients are stored in den. 

Given a transformation matrix P, the ss2ss function will perform the similarity transform. 
Store the state space model in A, B, C and D and the transformation matrix in P.

[Abar,Bbar,Cbar,Dbar]=ss2ss(A,B,C,D,P);

performs the similarity transform z=Px resulting in a state space system that is defined as:

&x Ax Bu

y Cx Du

= +
= +

6

where A = PAP-1, B= PB, C = CP-1, D = D. 
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4. Discrete-Time System Analysis

A. Convolution

Commands covered: conv
deconv

To perform discrete time convolution, x[n]*h[n], define the vectors x and h with elements in the
sequences x[n] and h[n].  Then use the command

y = conv(x,h)

This command assumes that the first element in x and the first element in h correspond to n=0, so
that the first element in the resulting output vector corresponds to n=0.  If this is not the case, then
the output vector will be computed correctly, but the index will have to be adjusted.  For example,

x = [1 1 1 1 1];
h = [0 1 2 3];
y = conv(x,h);

yields y = [0 1 3 6 6 6 5 3].  If x is indexed as described above, then y[0] = 0, y[1] = 1,
....  In general, total up the index of the first element in h and the index of the first element in x,
this is the index of the first element in y.  For example, if the first element in h corresponds to n =
-2 and the first element in x corresponds to n = -3, then the first element in y corresponds to n = -
5. 

Care must be taken when computing the convolution of infinite duration signals.  If the vector x has
length q and the vector h has length r, then you must truncate the vector y to have length min(q,r).
 See the comments in Problem 3.7 of the textbook for additional information. 

The command conv can also be used to multiply polynomials: suppose that the coefficients of
a(s) are given in the vector a and the coefficients of b(s) are given in the vector b, then the
coefficients of the polynomial a(s)b(s) can be found as the elements of the vector defined by ab =
conv(a,b).

The command deconv is the inverse procedure to the convolution.  In this text, it is used as a
means of dividing polynomials.  Given a(s) and b(s) with coefficients stored in a and b, then the
coefficients of c(s) = b(s)/a(s) are found by using the command c = deconv(b,a). 

B. Transfer Function Representation

For a discrete-time transfer function, the coefficients are stored in descending powers of z or
ascending powers of z-1.  For example,
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H(z)  =  
2 z + 3z+ 4

z + 5z+ 6
 =  

2 + 3z + 4 z
1+ 5z + 6 z

2

2

-1 -2

-1 -2 7

then define the vectors as

num = [2 3 4];
den = [1 5 6];

C. Time Simulations

Commands Covered: recur
conv
dstep
dimpulse
filter

There are three methods to compute the response of a system described by the following recursive
relationship

The first method uses the command recur and is useful when there are nonzero initial
conditions.  This command is available from the MathWorks ftp site and a shortened version is
given in Figure C.5 of the textbook.  The inputs to the function are the coefficients ai and bi stored
in the vectors a = [a1 a2 ... aN] and b = [b0 b1 ... bM], the initial conditions on x
and on y are stored in the vectors x0 = [x[n0-M], x[n0-M+1],...,x[n0-1]] and y0 =
[y[n0-N], y[n0-N+1],...,y[n0-1]]], and the time indices for which the solution needs
to be calculated are stored in the vector n where n0 represents the first element in this vector.  To
use recur, type

y = recur(a,b,n,x,x0,y0);

The output is a vector y with elements y[n]; the first element of y corresponds to the time index
n0.  For example, consider the system described by

y[n] - 0.6y[n-1] + 0.08y[n-2] = x[n-1]

where x[n] = u[n] and with initial conditions y[-1] = 2, y[-2] = 1, and x[-1] = x[-2] = 0.  To
compute the response y[n] for n = 0, 1,...,10, type

a = [-0.6 0.08]; b = [0 1];
x0 = 0; y0 = [1 2];
n = 0:10;
x = ones(1,11);
y = recur(a,b,n,x,x0,y0);

y[n]  +  [ ] [ ]
i=1

N

i=0

M
 =  ∑ ∑− −a y n i x n ii ib
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The vector y contains the values of y[n] for n = 0,1,...,10.

The second method to compute the response uses convolution and is useful when the initial
conditions on y are zero.  This method involves first finding the impulse response of the system,
h[n], and then convolving h[n] with x[n] as discussed in Section 4.A.  For example, consider the
system described above with zero initial conditions, that is, y[-1]=y[-2]=0.  The impulse response
for this system is h[n] = 5[(0.4)n-(0.2)n]u[n].  The commands to compute y[n] are

n = 0:10;
x = ones(1,11);
h = 5*(0.4).^n - 5*(.02).^n;
y = conv(x,h);
y = y(1:length(n));

The vector y contains the values of y[n] for n = 0,1,...,10.  Note that the vector was truncated to
length(n) because both x[n] and h[n] are infinite duration signals.  See the comments in Section
4.A regarding the convolution of infinite duration signals.

The third method of solving for the response requires that the transfer function of the system be
known.  The commands dstep and dimpulse compute the unit step response and the unit
impulse response, respectively while the command filter computes the response to initial
conditions and to arbitrary inputs.  The denominator coefficients are stored as den = [1 a1 a2

... aN] and the numerator coefficients are stored as num = [b0 b1 ... bM, 0 ... 0]
where there are N-M zeros padded on the end of the coefficients.  For example, consider the system
given above with initial conditions y[-1] = y[-2] = 0. To compute the step response for n=0 to n=10,
type the commands

n = 0:10;
num = [0 1 0]; den = [1 -0.6 0.08];
y = dstep(num,den,length(n));

The response can then be plotted using the stem plot.  To compute the impulse response, simply
replace dstep with dimpulse in the above commands.

To compute the response to an arbitrary input, store the input sequence in the vector x. The
command

y = filter(num,den,x);

is used to compute the system response.  If the system has nonzero initial conditions, the initial
conditions can be stored in a vector v0.  For a first order system where N=M=1, define zi =
[b1*x[-1]-a*y[-1]].  For a second order system where N=M=2, define zi = [b1*x[-
1]+b2*x[-2]-a1*y[-1]-a2*y[-2], b1*x[-1]-a2*y[-1]].  To compute the response
with nonzero initial conditions, type

y = filter(num,den,x,zi);
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For example, consider the previous system with the initial conditions y[-1] = 2 and y[-2] = 1 and
input x[n] = u[n].  Type the following commands to compute y[n].

n = 0:10;  x = ones(1,11);
num = [0 1 0]; den = [1 -0.6 0.08];
zi = [0.6*2-0.08*1, -0.08*2];
y = filter(num,den,x,zi);

D. Frequency Response Plots

Commands covered: freqz

The DTFT of a system can be calculated from the transfer function using freqz.  Define the
numerator and the denominator of the transfer function in num and den.  The command

[H,Omega] = freqz(num,den,n,’whole’);

computes the DTFT for n points equally spaced around the unit circle at the frequencies contained
in the vector Omega.  The magnitude of H is found from abs(H) and the phase of H is found
from angle(H). To customize the range for Ω, define a vector Omega of desired frequencies,
for example Omega = -pi:2*pi/300:pi defines a vector of length 301 with values that
range from -π to π.  To get the DTFT at these frequencies, type

H = freqz(num,den,Omega);

E. Digital Filter Design

Commands covered: bilinear
butter
cheby1
hamming
hanning

The analog prototype method of designing IIR filters can be done by first designing an analog filter
with the desired characteristics as shown in Section 3.D, then mapping the filter to the discrete-time
domain.  Store the numerator and denominator of the analog filter, H(s), in the vectors num and
den, and let T be the sampling period.  Then the numerator and denominator of the digital filter
Hd(z) is found from the following command

[numd,dend] = bilinear(num,den,1/T)

Alternately, the commands butter and cheby1 automatically design the analog filter and then
use the bilinear transformation to map the filter to the discrete-time domain.  Lowpass, highpass,
bandstop, and bandpass filters can be designed using this method.  The digital cutoff frequencies
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must be specified; these should be normalized by π.  To design a digital lowpass filter based on the
analog Butterworth filter, use the commands:

[num,den] = butter(n,Omegac)

where n is the number of poles and Omegac is the normalized digital cutoff frequency, Ωc =
ωcT/π.  To design a highpass filter with cutoff frequency Omegac, use the commands

[num,den] = butter(n,Omegac,’high’)

To design a bandpass filter with passband from Omega1 to Omega2, define Omega =
[Omega1,Omega2] and use the command

[num,den] = butter(n,Omega)

To design a bandstop filter with stopband from Omega1 to Omega2, define Omega =
[Omega1, Omega2] and use the command

[num,den] = butter(n,Omega,’stop’) 

The design for an nth order Type I Chebyshev filter is accomplished using the same methods as for
butter except that "butter" is replaced by "cheby1":

[num,den] = cheby1(n,Omegac);  % for a lowpass filter
[num,den] = cheby1(n,Omegac,’high’);  % for a highpass filter

If Omega has two elements,

[num,den] = cheby1(n,Omega);  % for a bandpass
[num,den] = cheby1(n,Omega,’stop’);  % for a bandstop

The windows used in FIR filter design are given by

w = boxcar(N)    % rectangular window
w = hamming(N)   
w = hanning(N)

These commands are used to truncate the infinite impulse response of an ideal digital filter with the
result being an FIR filter with length N.  

The Signal Processing Toolbox also provides commands for computing the FIR filter directly.  To
obtain an FIR filter with length N and cutoff frequency Omegac (normalized by π) use the
command

hd = fir1(N-1,Omegac)

The vector hd contains the impulse response of the FIR where hd(1) is the value of hd[0].
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A length N highpass filter with normalized cutoff frequency Omegac is designed by using the
command

hd = fir1(N-1,Omegac,’high’)

A bandpass with passband from Omega1 to Omega2 is obtained by typing

hd = fir1(N-1,Omega)

where Omega = [Omega1,Omega2].  A bandstop filter with stopband from Omega1 to
Omega2 is obtained by typing

hd = fir1(N-1,Omega,’stop’)

where Omega = [Omega1,Omega2].  The fir1 command uses the Hamming window by
default.  Other windows are obtained by adding an option of ’hanning’ or ’boxcar’ to the
arguments; for example,

hd = fir1(N-1,Omegac,’high’,boxcar(N))

creates a highpass FIR filter with cutoff frequency Omegac using a rectangular window.

F. Digital Control Design

Commands covered: bilinear
c2dm
hybrid

An analog controller Gc(s) can be mapped to a digital controller Gd(z) using the bilinear
transformation or the step response matching method.  Store the numerator and denominator of
Gc(s) in num and den.  Then the numerator and denominator of Gd(z) is found from the bilinear
transformation using the commands

[numd,dend] = bilinear(num,den,1/T)

where T is the sampling frequency.  To use the step invariant method, use the commands

[numd,dend] = c2dm(num,den,T,’zoh’)

To simulate the response of a continuous-time plant with a digital controller, use the command
hybrid, which is available at the MathWorks ftp site.  Consider the block diagram in Figure
11.25.  The numerator and denominator coefficients of the plant are stored in NGp and DGp; the
numerator and denominator coefficients of the controller are stored in NGd and DGd; the
reference input signal is stored in r; and the sampling time is stored in T.  The increments in the
time vector should selected to be the sampling time divided by an integer, for example, t =
0:b:Tend where there is some integer m such that bm=T.  The command is used as
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[y,ud] = hybrid(NGp,DGp,NGd,DGd,T,t,r);

The outputs of the command are the system response, y, and the control signal that is input to the
plant, ud.  The M-file contains a loop which computes the discrete-time control and then simulates
the continuous-time plant for T seconds with the constant control.  The process repeats for the next
T second interval.  The commands for hybrid are given below:

function [Y,UD] = hybrid(Np,Dp,Nd,Dd,T,t,U);
[Ac,Bc,Cc,Dc]=tf2ss(Np,Dp);
[Ad,Bd,Cd,Dd]=tf2ss(Nd,Dd);
nsam = T/(t(2)-t(1));    % # of integration pts per sample

% initialize
Y = 0;
UD = 0;
[ncr,ncc] = size(Ac);
xc0 = zeros(ncr,1);
[ndr,ndc] = size(Ad);
xdk = zeros(ndr,1);
kmax = fix(t(length(t))/T);  % # of complete samples in t

for k = 0:kmax-1
  % calculate control and output of zoh
  ek = U(k*nsam+1) - Y(k*nsam+1);
  xd = Ad*xdk + Bd*ek;
  zoh = Cd*xdk + Dd*ek;
  xdk = xd;
  % integrate continuous-time plant with input
  %   of zoh for T seconds
  udi = zoh*ones(nsam+1,1);
  ti = t(k*nsam+1:(k+1)*nsam+1);
  [yi,xi] = lsim(Ac,Bc,Cc,Dc,udi,ti,xc0);
  xc0 = xi(nsam+1,:);
  % augment vectors
  Y = [Y;yi(2:nsam+1)];
  UD = [UD;udi(2:nsam+1)];
end

if(kmax*nsam+1 < length(t))
% compute tail of simulation from t(kmax*nsam)
%   to t_end
  k = kmax;
% calculate control and output of zoh
  ek = U(k*nsam+1) - Y(k*nsam+1);
  xd = Ad*xdk + Bd*ek;
  zoh = Cd*xdk + Dd*ek;
% integrate continuous-time plant with input of zoh
  ti = t(k*nsam+1:length(t));
  udi = zoh*ones(length(ti),1);
  [yi,xi] = lsim(Ac,Bc,Cc,Dc,udi,ti,xc0);
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% augment vectors
  Y = [Y;yi(2:length(yi))];
  UD = [UD;udi(2:length(udi))];
end

G. State Space Representation

Commands Covered: dlsim
dstep
dimpulse

Most of the commands for the continuous time state space representation also work for the discrete
time state space.  For example, ss2tf, tf2ss, and ss2ss for discrete time are used exactly
the same way as for the continuous time case discussed in Section 3.F.  There is a discrete time
version of the command lsim, which is used as follows:

[y,x] = dlsim(A,B,C,D,u,n);

where the output is stored in y, the states are stored in x, the input is stored in u and the time
index is stored in n. 
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5.  Plotting

Commands covered: plot
xlabel
ylabel
title
grid
axis
stem
subplot

The command most often used for plotting is plot, which creates linear plots of vectors and
matrices; plot(t,y) plots the vector t on the x-axis versus vector y on the y-axis.   There are
options on the line type and the color of the plot which are obtained using plot(t,y,’option’).  The
linetype options are ’-’ solid line (default), ’--’ dashed line, ’-.’ dot dash line, ’:’ dotted line.  The points
in y can be left unconnected and delineated by a variety of symbols: + . * o x.  The following
colors are available options:

r red
b blue
g green
w white
k black

For example, plot(t,y,’--’) uses a dashed line, plot(t,y,’*’) uses * at all the points
defined in t and y without connecting the points, and plot(t,y,’g’) uses a solid green line.
 The options can also be used together, for example, plot(t,y,’g:’) plots a dotted green line.

To plot two or more graphs on the same set of axes, use the command plot(t1,y1,t2,y2),
which plots y1 versus t1 and y2 versus t2. 

To label your axes and give the plot a title, type

xlabel(’time (sec)’)
ylabel(’step response’)
title(’My Plot’)

Finally, add a grid to your plot to make it easier to read.  Type

grid

The problem that you will encounter most often when plotting functions is that MATLAB will
scale the axes in a way that is different than you want them to appear.  You can easily override the
autoscaling of the axes by using the axis command after the plotting command:

axis([xmin xmax ymin ymax]);
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where xmin, xmax, ymin, and ymax are numbers corresponding to the limits you desire for
the axes.  To return to the automatic scaling, simply type axis. 

For discrete-time signals, use the command stem which plots each point with a small open circle
and a straight line.  To plot y[k] versus k, type

stem(k,y)

You can use stem(k,y,’filled’) to get circles that are filled in.  When using Version 3.0 of
the Signal Processing Toolbox (or version 4.0 of the Student Version of MATLAB), the following
must be done in order to get filled-in circles: The line in stem.m

h = plot(x,y,’o’,xx(:),yy(:),linetype);

can be replaced with

h = plot(x,y,’.’,xx(:),yy(:),linetype);
set(h,’markersize’,18);

to create closed circles.

To plot more than one graph on the screen, use the command subplot(mnp) which partitions
the screen into an mxn grid where p determines the position of the particular graph counting the
upper left corner as p=1.  For example,

subplot(211),semilogx(w,magdb);
subplot(212),semilogx(w,phase);

plots the bode plot with the log-magnitude plot on top and the phase plot below.  Titles and labels
can be inserted immediately after the appropriate semilogx command or plot command.  To
return to a full screen plot, type subplot(111).
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6.  Loading and Saving Data

When using MATLAB, you may wish to leave the program but save the vectors and matrices you
have defined.  To save the file to the working directory, type

save filename

where "filename" is a name of your choice.  To retrieve the data later, type

load filename


