MATLAB Tutorial

This tutorial is available as a supplement to the textbook Fundamentals of Sgnals and Systems
Using Matlab by Edward Kamen and Bonnie Heck, published by Prentice Hall. The tutorial covers
basic MATLAB commands that are used in introductory signals and systems analysis. It is meant
to serve as a quick way to learn MATLAB and a quick reference to the commands that are used in
this textbook. For more detailed information, the reader should consult the official MATLAB
documentation. An easy way to learn MATLAB isto sit down at a computer and follow along with
the examples given in thistutorial and the examples given in the textbook.

The tutoria is designed for students using either the professional version of MATLAB (ver. 5.0)
with the Control Systems Toolbox (ver. 4.0) and the Signal Processing Toolbox (ver. 4.0), or using
the Student Edition of MATLAB (ver. 5.0). The commands covered in the tutoria and their
descriptions are dso valid for MATLAB version 4.0.

The topics covered in thistutorial are:

1. MATLAB Basics 2
A. Definition of Variables 2
B. Definition of Matrices 4
C. General Information 6
D. M-files 6
2. Fourier Analysis 8
3. Continuous Time System Analysis 10
A. Transfer Function Representation 10
B. Time Simulations 12
C. Frequency Response Plots 14
D. Analog Filter Design 15
E. Control Design 16
F. State Space Representation 16
4. Discrete-Time System Analysis 18
A. Convolution 18
B. Transfer Function Representation 18
C. Time Simulations 19
D. Frequency Response Plots 21
E. Digital Filter Design 21
F. Digital Control Design 23
G. State Space Representation 25
5. Plotting 26
6. Loading and Saving Data 28

1. MATLAB Basics

MATLAB is started by clicking the mouse on the appropriate icon and is ended by typing exi t or
by using the menu option. After each MATLAB command, the "return” or "enter" key must be
depressed.

A. Definition of Variables

Variables are assigned numerical values by typing the expression directly, for example, typing

a = 1+2

yidds: a
3

The answer will not be displayed when a semicolon is put at the end of an expression, for example
type a = 1+2;.

MATLAB utilizes the following arithmetic operators:

+ addition

- subtraction

* multiplication
/ division

A power operator
’ transpose

A variable can be assigned using a formula that utilizes these operators and either numbers or
previousy defined variables. For example, since a was defined previoudy, the following
expressionisvaid

b = 2*ag;
To determine the value of aprevioudy defined quantity, type the quantity by itself:
b

yieds: b =
6

If your expression does not fit on one line, use an dlipsis (three or more periods at the end of the
line) and continue on the next line.

c = 1+2+43+. ..
5+6+7;

There are severa predefined variables which can be used at any time, in the same manner as user-
defined variables:

[sort(-1)
j sart(-1)
pi 3.1416...
For example,
y= 2%(1+4%))
yidds: y=

2. 0000 + 8.0000i

There are also a number of predefined functions that can be used when defining a variable. Some
common functionsthat are used in thistext are:

abs magnitude of anumber (absolute value for real numbers)
angl e angle of acomplex number, in radians

cos cosine function, assumes argument isin radians

sin sine function, assumes argument isin radians

exp exponentia function

For example, with 'y defined as above,

c = abs(y)
yidds: c =
8. 2462
c = angl e(y)
yidds: c =
1.3258

With a=3 asdefined previoudly,

c = cos(a)
yidds: c =
-0. 9900
c = exp(a)
yidds: c =
20. 0855

Note that exp can be used on complex numbers. For example, with y = 2+8i as defined
above,

c = exp(y)

yields: o
-1. 0751 + 7.3104i

which can be verified by using Euler's formula:
c = €’cos(8) + je’sin(8)

B. Definition of Matrices

MATLAB is based on matrix and vector algebra; even scalars are treated as 1x1 matrices.
Therefore, vector and matrix operations are as simple as common calculator operations.

Vectors can be defined in two ways. Thefirst method is used for arbitrary elements:
v =[1357],;

creates a 1x4 vector with elements 1, 3, 5 and 7. Note that commas could have been used in place
of spacesto separate the elements. Additiona elements can be added to the vector:

v(5) = 8;

yieldsthevector v = [1 3 5 7 8] . Previoudy defined vectors can be used to define a new
vector. For example, with v defined above

a
b

[9 10];
[v a];

createsthevector b = [1 3 5 7 8 9 10].
The second method is used for creating vectors with equally spaced elements:
t = 0:.1:10;

creates a 1x101 vector with the elements 0, .1, .2, .3,...,10. Note that the middle number defines the
increment. If only two numbers are given, then the increment is set to adefault of 1:

k = 0:10;
creates a 1x11 vector with theelements O, 1, 2, ..., 10.
Matrices are defined by entering the elements row by row:

M=1[124;, 36 8];
creates the matrix

O 2 40

" B e o

There are anumber of special matrices that can be defined:

null matrix: M=1];

nxm matrix of zeros: M = zeros(n, n;
nxm matrix of ones: M = ones(n,m;
nxn identity matrix: M = eye(n);

A particular element of amatrix can be assigned:
M1,2) =5
places the number 5 in the first row, second column.
In this text, matrices are used only in Chapter 12; however, vectors are used throughout the text.

Operations and functions that were defined for scalars in the previous section can also be used on
vectors and matrices. For example,

a=[123];

b=[45 6];

c=a+b
yidds ¢ =

579

Functions are applied e ement by element. For example,

t
X

0:10;
cos(2*t);

createsavector x with elements equal to cos(2t) fort=0, 1, 2, ..., 10.

Operations that need to be performed element-by-element can be accomplished by preceding the
operation by a".". For example, to obtain avector X that contains the elements of x(t) = tcos(t) at
specific pointsin time, you cannot ssimply multiply the vector t with the vector cos(t) . Instead
you multiply their elements together:

t
X

0:10;
t.*cos(t);

C. General Information

Matlab is case sensitive so "a" and "A" are two different names.
Comment statements are preceded by a"%.

On-line help for MATLAB can be reached by typing hel p for the full menu or typing hel p
followed by a particular function name or M-file name. For example, hel p cos gives help on
the cosine function.

The number of digits displayed is not related to the accuracy. To change the format of the display,
type format short e for scientific notation with 5 decimal places, format | ong e for
scientific notation with 15 significant decima places and fornmat bank for placing two
significant digitsto the right of the decimal.

The commands who and whos give the names of the variables that have been defined in the
workspace.

The command | engt h(x) returns the length of a vector x and si ze(x) returns the
dimension of the matrix Xx.

D. M-files

M-files are macros of MATLAB commands that are stored as ordinary text files with the extension
"m", that isfilename.m. An M-file can be either a function with input and output variables or alist
of commands. All of the MATLAB examples in this textbook are contained in M-files that are
available at the MathWorks ftp site.

The following describes the use of M-files on a PC version of MATLAB. MATLAB requires that
the M-file must be stored either in the working directory or in a directory that is specified in the
MATLAB path list. For example, consider usng MATLAB on a PC with a user-defined M-file
stored in a directory called "\MATLAB\MFILES'. Then to access that M-file, either change the
working directory by typing cd\ matl ab\nfiles from within the MATLAB command
window or by adding the directory to the path. Permanent addition to the path is accomplished by
editing the \MATLAB\matlabrc.m file, while temporary modification to the path is accomplished
by typing pat h(path,’ \ mat| ab\ nfi | es’) fromwithin MATLAB.

The M-files associated with this textbook should be downloaded from
www.ece.gatech.edu/users/192/book/M-fileshtml and copied to a subdirectory named
"\MATLAB\KAMEN", and then this directory should be added to the path. The M-files that come
with MATLAB are aready in appropriate directories and can be used from any working directory.

As example of an M-file that defines a function, create a file in your working directory named
yplusx.m that contains the following commands:

function z = ypl usx(y, Xx)
z =y + X

The following commands typed from within MATLAB demonstrate how this M-fileis used:

2,

X
y =3

z ypl usx(y, x)

MATLAB M-files are most efficient when written in away that utilizes matrix or vector operations.

Loops and if statements are available, but should be used sparingly since they are computationally
inefficient. An example of the use of the command f or is

for k=1:10,
x(k) = cos(k);
end

This creates a 1x10 vector x containing the cosine of the positive integers from 1 to 10. This
operation is performed more efficiently with the commands

k
X

1:10;
cos(k);

which utilizes a function of a vector instead of afor loop. An i f statement can be used to define
conditional statements. An exampleis

if(a <= 2),
b = 1;

el seif(a >=4)
b = 2;

el se
b = 3;

end

The allowable comparisons between expressions are >=, <=, <, >, ==, and ~=.

Several of the M-files written for this textbook employ a user-defined variable which is defined
with the command i nput . For example, suppose that you want to run an M-file with different
valuesof avariable T. The following command line within the M-file defines the value:

T =input(’lnput the value of T:. ")

Whatever comment is between the quotation marks is displayed to the screen when the M-file is
running, and the user must enter an appropriate value.

2. Fourier Analysis

Commands covered: df t
i df t
fft
ifft
contfft

The dft command uses a straightforward method to compute the discrete Fourier transform.
Defineavector x and compute the DFT using the command

X = dft (x)

The first element in X corresponds to the value of X(0). The function df t is available from the
MathWorks ftp site and is defined in Figure C.2 of the textbook.

The command i dft uses a straghtforward method to compute the inverse discrete Fourier
transform. Defineavector X and compute the IDFT using the command

X = idft(X

The first dement of the resulting vector x is x[0]. The function i dft is avalable a the
MathWorks ftp site and is defined in Figure C.3 of the textbook.

For a more efficient but less obvious program, the discrete Fourier transform can be computed
using the command f ft which performs a Fast Fourier Transform of a sequence of numbers. To
compute the FFT of a sequence x[n] which is stored in the vector x, use the command

X = fft(x)

Used in this way, the command fft is interchangeable with the command dft. For more
computational efficiency, the length of the vector x should be equal to an exponent of 2, that is 64,
128, 512, 1024, 2048, etc. The vector x can be padded with zeros to make it have an appropriate
length. MATLAB does this automatically by using the following command where N is defined to
be an exponent of 2:

X=fft(x,N;

Thelonger the length of X, the finer the grid will be for the FFT. Due to awrap around effect, only
the first N/2 points of the FFT have any meaning.

The i f ft command computes the inverse Fourier transform:

x = ifft(X);

The FFT can be used to approximate the Fourier transform of a continuous-time signal as shown in
Section 6.6 of the textbook. A continuous-time signal x(t) is sampled with a period of T seconds,
then the DFT is computed for the sampled signa. The resulting amplitude must be scaled and the
corresponding frequency determined. An M-file that approximates the Fourier Transform of a
sampled continuous-time signal is available from the ftp site and is given below:

function [X,w] = contfft(x,T);
[n,m = size(x);
if n<m

D
>
o

) = eps;
(1-exp(-j*2*pi*n/N) ./ (j*2*pi *n/ N T).*Xk. " ;
2*pi *n/ N T,

=S XSS5 zZzX
—~ =
TN

The input is the sampled continuous-time signal x and the sampling time T. The outputs are the
Fourier transform stored in the vector X and the corresponding frequency vector w.

3. Continuous Time System Analysis

A. Transfer Function Representation

Commands covered: tf2zp
zp2tf
cl oop
f eedback
paral | el
series

Transfer functions are defined in MATLAB by storing the coefficients of the numerator and the
denominator in vectors. Given a continuous-time transfer function

B(s)

H(S) = @

Error! Switch argument not specified.

where B(S) = bys*+by.18" +...+bp and A(S) = S\ +anaS +...+a. Store the coefficients of B(s) and
A(s) inthevectors num = [b, b,, ... b,J] ad den = [1 a,, ... a]. Inthistext,
the names of the vectors are generally chosen to be numand den, but any other name could be
used. For example,

2s+3 . -
= |
H(s) S3+452+5Error. Switch argument not specified.
Is defined by
num= [2 3];
den = [1 4 0 5];

Notethat all coefficients must be included in the vector, even zero coefficients.

A transfer function may also be defined in terms of its zeros, poles and gain:

H = S 29).. (S zm)
(s P)(s P)--.(sPp)

Error! Switch argument not specified.
To find the zeros, poles and gain of a transfer function from the vectors numand den which
contain the coefficients of the numerator and denominator polynomials, type

[z,p, k] = tf2zp(num den)

The zeros are stored in z, the poles are stored in p, and the gain is stored in k. To find the
numerator and denominator polynomialsfrom z, p, and k, type

10

[num den] = zp2tf(z,p, k)
The overal transfer function of individual systemsin parallel, series or feedback can be found using
MATLAB. Consider block diagram reduction of the different configurations shown in Figure 1.

Store the transfer function G in nunG and denG, and the transfer function H in nunH and
denH.

To reduce the generd feedback system to asingle transfer function, Gy(s) = G(s)/(1+G(s)H(s)) type
[nuntl , dencl] = feedback(nuntg denG nunH, denH) ;

For a unity feedback system, let nunH = 1 and denH = 1 before applying the above
algorithm. Alternately, use the command

[nuncl , dencl] = cl oop(nunG, denG -1);

To reduce the series system to asingle transfer function, G4(s) = G(s)H(s) type
[nuns, dens] = series(nunG denG nunH, denH) ;

To reduce the parallel system to asingle transfer function, Gy(s) = G(s) + H(s) type
[nunp, denp] = paral | el (nunG denG nuntH, denH);

(Parald is not available in the Student Version.)

» G(s) >

unity feedback

g G(s) >

Hs)

feedback

11

—» G(s) —» H(s) —»

series

—P® G(s)

™ H(s)

parallel
B. Time Simulations
Commands covered: resi due
step
i rr_pul se
| sim

The analytical method to find the time response of a system requires taking the inverse Laplace
Transform of the output Y(s). MATLAB aides in this process by computing the partia fraction
expansion of Y(s) using the command residue. Store the numerator and denominator
coefficientsof Y(s) in numand den, then type

[r,p, k] = residue(num den)

Theresidues are stored in 1, the corresponding poles are stored in p, and the gain is stored in k.
Once the partia fraction expansion is known, an analytical expression for y(t) can be computed by
hand.

A numerical method to find the response of a system to a particular input is availablein MATLAB.
First store the numerator and denominator of the transfer function in numand den, respectively.
To plot the step response, type

st ep(num den)

12

To plot the impul se response, type
I mpul se(num den)

For the response to an arbitrary input, use the command | si m Create avector t which contains
the time values in seconds at which you want MATLAB to caculate the response. Typicaly, thisis
done by entering

t = a:b:c;

where a isthestartingtime, b isthetimestep and c isthe end time. For smooth plots, choose b
S0 that there are at least 300 elements in t (increase as necessary). Define the input x as a
function of time, for example, arampisdefinedas x = t. Then plot the response by typing

| si m(num den, x, t);

To customize the commands, the time vector can be defined explicitly and the step response can be
saved to a vector. Simulating the response for five to six time constants generaly is sufficient to
show the behavior of the system. For a stable system, a time constant is calculated as 1/Re(-p)
where p isthe pole that has the largest real part (i.e., is closest to the origin).

For example, consider atransfer function defined by

2
H(s) = —4
(9 o2

The step response y is calculated and plotted from the following commands:

num= 2; den =[1 2];

t = 0:3/300: 3; %for a tine constant of 1/2
y = step(numden,t);
plot(t,y)

For the impulse response, simply replace theword st ep with i nmpul se. For the responseto an
arbitrary input stored in X, type

y = I sim(numden, x,t);
plot(t,y)

13

C. Frequency Response Plots

Commands covered: fregs
bode
| ogspace
| 0g10
sem | ogx
unwr ap

To compute the frequency response H(w) of a transfer function, store the numerator and
denominator of the transfer function in the vectors numand den. Define avector w that contains
the frequencies for which H(w) isto be computed, for example w = a: b: ¢ wherea isthe lowest
frequency, c isthe highest frequency and b istheincrement in frequency. The command

H = fregs(num den, w)
returns a complex vector Hthat contains the value of H(w) for each frequency in w.

To draw a Bode plot of a transfer function which has been stored in the vectors numand den,
type

bode(num den)
To customize the plot, first define the vector w which contains the frequencies a which the Bode
plot will be calculated. Since w should be defined on a log scale, the command | ogspace is
used. For example, to make a Bode plot ranging in frequencies from 10 to 107, define why
w = | ogspace(-1, 2);
The magnitude and phase information for the Bode plot can then be found be executing:
[mag, phase] = bode(num den, w);
To plot the magnitude in decibels, convert mag using the following command:
magdb = 20*| ogl0(nmag) ;
To plot the results on a semilog scale where the y-axisislinear and the x-axis is logarithmic, type
sem | ogx(w, magdb)
for the log-magnitude plot and type

sem | ogx(w, phase)

14

for the phase plot. The phase plot may contain jumpsmfdch may not be desired. To remove
these jumps, use the commandw ap prior to plotting the phase.

sem | ogx(w, unwr ap(phase))

D. Analog Filter Design

Commands covered: buttap
cheblab
zp2tf

| p21p
| p2bp

| p2hp
| p2bs

MATLAB contains commands for various analog filter designs, including those for designing a
Butterworth filter and a Type | Chebyshev filter. The commabdd t ap and cheblab are

used to design lowpass Butterworth and Type | Chebyshev filters, respectively, with cutoff
frequencies of 1 rad/sec. For an n-pole Butterworth filter, type

[z,p, k] = buttap(n)

where the zeros of the filter are storedanthe poles are stored ip and the gain of the filter is in
k. For an n-pole Type | Chebyshev filter witRp decibels of ripple in the passband, type

[z, p, k] = cheblab(n, Rp)
To find the numerator and denominator polynomials of the resulting filter rporp and k; type
[b,a] = zp2tf(z,p, k)

where a contains the denominator coefficients ard contains the numerator coefficients.
Frequency transformations from one lowpass filter to another with a different cutoff frequency, or
from lowpass to highpass, or lowpass to bandstop or lowpass to bandpass can be performed in
MATLAB. These transformations can be used with either the Butterworth filters or the Chebyshev
filters. Supposeb and a store the numerator and denominator of a transfer function of a lowpass
filter with cutoff frequency 1 rad/sec. To map to a lowpass filter with cutoff frequéicynd
numerator and denominator coefficients storedihand al, type

[bl,al] = I p2l p(b, a, W)
To map to a highpass filter with cutoff frequeny, type
[bl, al] = | p2hp(b, a, W)

To map to a bandpass filter with bandwidsw centered at the frequendo, type

15

[bl, al] = | p2bp(b, a, W, Bw)
To map to a bandstop filter with stopband bandwidth Bw centered about the frequency W, type
[bl, al] = | p2bs(b, a, W, Bw)

E. Control Design

Commands covered: rl ocus

Consider a feedback loop as shown in Figure 1 where G(s)H(s) = KP(s) and K is a gain and P(s)
contains the poles and zeros of the controller and of the plant. The root locusis a plot of the roots
of the closed loop transfer function as the gain is varied. Suppose that the numerator and
denominator coefficients of P(s) are stored in the vectors numand den. Then the following
command computes and plots the root locus:

rl ocus(num den)

To customize the plot for a specific range of K, say for K ranging from O to 100, then use the
following commands:

K = 0:100;
r = rlocus(num den, K);
plot(r,”.")

The graph contains dots at points in the complex plane that are closed loop poles for integer values
of Kranging from 0to 100. To get afiner grid of points, use a smaller increment when defining
K, for example, K = 0:.5: 100. Theresulting matrix r contains the closed poles for al of the
gans defined in the vector K. Thisis particularly useful to calculate the closed loop poles for one
particular value of K. Note that if the root locus lies entirely on the real axis, then using
plot(r,’.") givesinaccurate results.

F. State Space Representation

Commands Covered: step
I sim
ss2tf
tf2ss
SS2ss

The standard state space representation isused in MATLAB, i.e,,

X=Ax+Bu
y=Cx

16

where x is nx1 vector, u is mx1, y is px1, A isnxn, B isnxm, and C is pxn. The response of a
system to various inputs can be found using the same commands that are used for transfer function
representations. st ep, i npul se,and | si m The argument list contains the A, B, C, and D
matrices instead of the numerator and denominator vectors. For example, the step response is
obtained by typing:

[y,x,t] = step(A B, CD);

The states are stored in X, the outputsin y and the time vector, which is automatically generated,
isstoredin t. Therowsof x and y contain the states and outputs for the time pointsin t . Each
column of X representsastate. For example, to plot the second state versustime, type

plot(t,x(:,2))

To find the response of an arbitrary input or to find the response to initia conditions, use | si m

Define a time vector t and an input matrix u with the same number of rows asin t and the
number of columns equaling the number of inputs. An optional argument is the initial condition
vector x0. The command isthen given as

[y, x] =1IsimA B C Du,t,x0);

You can find the transfer function for a single-input/single-output (SISO) system using the
command:

[num den] = ss2tf(A B, C D);
The numerator coefficients are stored in numand the denominator coefficients are stored in den.

Given a transformation matrix P, the ss2ss function will perform the similarity transform.
Store the state space model in A, B, Cand D and the transformation matrix in P.

[Abar, Bbar, Cbar, Dbar] =ss2ss(A, B, C, D, P);
performs the similarity transform z=Px resulting in a state space system that is defined as:

X:Kx+§u6
y=Cx+Du

where A = PAP!, B=PB, C=CP?!, D=D.

17

4. Discrete-Time System Analysis

A. Convolution

Commands covered: conv
deconv

To perform discrete time convolution, x[n]*h[n], define the vectors x and h with elements in the
sequences X[n] and h[n]. Then use the command

y = conv(Xx, h)

This command assumes that the first element in x and thefirst element in h correspond to n=0, so
that the first element in the resulting output vector corresponds to n=0. If thisis not the case, then
the output vector will be computed correctly, but the index will have to be adjusted. For example,

< o X
I

yiddsy = [0 1 3 6 6 6 5 3]. If xisindexed asdescribed above, theny[0] =0, y[1] = 1,
... In generd, total up the index of the first ement in h and the index of the first lement in X,
thisisthe index of thefirst dement in y. For example, if the first element in h correspondsto n =
-2 and thefirst dement in x correspondsto n = -3, then the first element in y correspondsto n = -
5.

Care must be taken when computing the convolution of infinite duration signals. If the vector x has
length g and the vector h haslength r, then you must truncate the vector y to have length min(q,r).
See the commentsin Problem 3.7 of the textbook for additional information.

The command conv can aso be used to multiply polynomials. suppose that the coefficients of
a(s) are given in the vector a and the coefficients of b(s) are given in the vector b, then the
coefficients of the polynomia a(s)b(s) can be found as the elements of the vector defined by ab =
conv(a,b).

The command deconv is the inverse procedure to the convolution. In this text, it is used as a
means of dividing polynomials. Given a(s) and b(s) with coefficients stored in a and b, then the
coefficients of ¢(s) = b(s)/a(s) are found by using thecommand ¢ = deconv(b, a) .

B. Transfer Function Representation

For a discrete-time transfer function, the coefficients are stored in descending powers of z or
ascending powers of z*. For example,

18

27°+3z+4 _ 2+371+4772

H(z) = =
@ 7°+572+6 1+571+ 6772
then define the vectors as
num= [2 3 4];
den = [1 5 6];
C. Time Simulations
Commands Covered: recur
conv
dstep
di npul se
filter

There are three methods to compute the response of a system described by the following recursive
relationship

N M
yinl + 3 ayin=i] = Y byxn-i]
i=1 i=0

The first method uses the command recur and is useful when there are nonzero initial
conditions. This command is available from the MathWorks ftp site and a shortened version is
given in Figure C.5 of the textbook. The inputs to the function are the coefficients g and b; stored

inthevectors a = [a, a, ... a] and b = [b, b, ... b, theinitia conditions on x
andony arestored inthevectors X0 = [x[n-M, x[n,-M1],...,x[n;-1]] and y0 =
[y[n,-N, y[n,-N+1],...,y[n,-1]]], and the timeindices for which the solution needs

to be calculated are stored in the vector n where ng represents the first element in this vector. To
use recur,type

y = recur(a, b, n, x, x0, y0);

The output is avector y with elements y[n]; the first element of y corresponds to the time index
no. For example, consider the system described by

y[n] - 0.6y[n-1] + 0.08y[n-2] = X[n-1]

where x[n] = u[n] and with initial conditions y[-1] = 2, y[-2] = 1, and X[-1] = x[-2] = 0. To
compute the response y[n] for n=0, 1,...,10, type

a=[-0.6 0.08]; b=1[01];
x0 =0; yo =11 2];

n = 0:10;

X = ones(1,11);

y:

recur(a, b, n, x, x0, y0);

19

Thevector y containsthe values of y[n] for n=0,1,...,10.

The second method to compute the response uses convolution and is useful when the initia
conditions on y are zero. This method involves first finding the impulse response of the system,
h[n], and then convolving h[n] with x[n] as discussed in Section 4.A. For example, consider the
system described above with zero initial conditions, that is, y[-1]=y[-2]=0. The impulse response
for this sysemish[n] = 5[(0.4)"-(0.2)"Ju[n]. The commands to compute y[n] are

n = 0:10;

X = ones(1,11);

h = 5%(0.4)."n - 5*(.02)."n;
y = conv(x, h);

y = y(1l:length(n));

The vector y contains the values of y[n] for n = 0,1,...,10. Note that the vector was truncated to
| engt h(n) because both x[n] and h[n] are infinite duration signals. See the commentsin Section
4.A regarding the convolution of infinite duration signals.

The third method of solving for the response requires that the transfer function of the system be
known. The commands dstep and di nmpul se compute the unit step response and the unit
impulse response, respectively while the command filter computes the response to initia
conditions and to arbitrary inputs. The denominator coefficientsarestoredas den = [1 a, a,
a,] and the numerator coefficients are ssored as num = [b, b, ... b, 0 ... 0]
where there are N-M zeros padded on the end of the coefficients. For example, consider the system
given above with initial conditionsy[-1] = y[-2] = 0. To compute the step response for n=0 to n=10,
type the commands

0: 10;
=[010] den = [1 -0.6 0.08];
dste (numden | engt h(n));

||3||

n
nu
y

The response can then be plotted using the st emplot. To compute the impulse response, smply
replace dst ep with di npul se in the above commands.

To compute the response to an arbitrary input, store the input sequence in the vector x. The
command

y = filter(numden, x);

is used to compute the system response. If the system has nonzero initial conditions, the initia
conditions can be stored in a vector vO. For a first order system where N=M=1, define zi =
[b*x[-1]-a*y[-1]]. For asecond order system where N=M=2, define zi = [b*X[-
11 +b*x[-2]-a*y[-1]-a,*y[-2], b*x[-1]-a,*y[-1]]. To compute the response
with nonzero initial conditions, type

y = filter(numden,X,Zi);

20

For example, consider the previous system with the initial conditions y[-1] = 2 and y[-2] = 1 and
input X[n] = u[n]. Type the following commands to compute y[n].

n = 0:10; x = ones(1,11);

num= [0 1 0]; den =[1 -0.6 0.08];
zi = [0.6*2-0.08*1, -0.08*2];

y = filter(numden,x, zi);

D. Frequency Response Plots

Commands covered: freqz

The DTFT of a system can be calculated from the transfer function using freqz. Define the
numerator and the denominator of the transfer functionin numand den. The command

[H Oregal] = fregz(numden,n,’ whol e’);

computes the DTFT for n points equally spaced around the unit circle at the frequencies contained
in the vector Onega. The magnitude of His found from abs(H) and the phase of His found
from angl e(H) . To customize the range for Q, define a vector Orega of desired frequencies,
for example Qrega = -pi: 2*pi/ 300: pi defines a vector of length 301 with values that
range from -1tto T To get the DTFT at these frequencies, type

H = freqz(num den, Qrega) ;

E. Digital Filter Design

Commands covered: bi | i near
butter
chebyl
hanm ng
hanni ng

The analog prototype method of designing IIR filters can be done by first designing an analog filter
with the desired characteristics as shown in Section 3.D, then mapping the filter to the discrete-time
domain. Store the numerator and denominator of the analog filter, H(s), in the vectors numand
den, and let T be the sampling period. Then the numerator and denominator of the digital filter
Ha(z) isfound from the following command

[nund, dend] = bilinear(numden, 1/T)
Alternately, the commands butt er and cheby1 automatically design the anaog filter and then

use the bilinear transformation to map the filter to the discrete-time domain. Lowpass, highpass,
bandstop, and bandpass filters can be designed using this method. The digital cutoff frequencies

21

must be specified; these should be normalized by Tt To design a digital lowpass filter based on the
anal og Butterworth filter, use the commands:

[num den] = butter(n, Oregac)

where n is the number of poles and Onregac is the normalized digital cutoff frequency, Q¢ =
wcT/Tt To design ahighpass filter with cutoff frequency Onregac, use the commands

[num den] = butter(n, Qregac,’ high’)

To design a bandpass filter with passband from Onegal to Orega2, define Orega =
[Onegal, Onega2] and usethe command

[num den] = butter(n, Orega)

To design a bandstop filter with stopband from Onegal to Onega2, define Orega =
[Onegal, Qrega2] and usethe command

[num den] = butter(n, Orega,’ stop’)

The design for an n™ order Type | Chebyshev filter is accomplished using the same methods as for
but t er except that "but t er " isreplaced by "cheby1":

chebyl(n, Onegac); %for a |owpass filter

[num den]
chebyl(n, Oregac, high’); %for a highpass filter

[num den]

If Omega hastwo elements,

chebyl(n, Onega); % for a bandpass
chebyl(n, Orega,’ stop’); %for a bandstop

[num den]
[num den]

Thewindows used in FIR filter design are given by

boxcar (N) % rect angul ar wi ndow
hamm ng(N)
hanni ng(N)

£s=
TNV

These commands are used to truncate the infinite impul se response of an ideal digital filter with the
result being an FIR filter with length N.

The Signal Processing Toolbox also provides commands for computing the FIR filter directly. To
obtain an FIR filter with length N and cutoff frequency Omegac (normalized by 1) use the
command

hd = fir1(N 1, Qregac)

Thevector hd contains the impulse response of the FIR where hd(1) isthe value of hq[0].

22

A length N highpass filter with normalized cutoff frequency Omegac is designed by using the
command

hd = fir1(N1, Oregac,’ high’)
A bandpass with passhand from Qregal to Qrega?2 isobtained by typing
hd = fir1(N 1, Qrega)

where Qrega = [Oregal, Orega2] . A bandstop filter with stopband from QOregal to
Qrega?2 isobtained by typing

hd = fir1(N1, Orega, ' stop’)

where Orega = [Onmegal, Orega2]. The fir 1l command uses the Hamming window by
default. Other windows are obtained by adding an option of * hanni ng’ or * boxcar’ tothe
arguments; for example,

hd = fir1(N 1, Qregac,’ high’, boxcar(N))
creates a highpass FIR filter with cutoff frequency Omegac using a rectangular window.

F. Digital Control Design

Commands covered: bi | i near
c2dm
hybri d

An analog controller Gg(s) can be mapped to a digital controller Gy(z) using the bilinear
transformation or the step response matching method. Store the numerator and denominator of
G¢(s) in numand den. Then the numerator and denominator of Gy(2) is found from the bilinear
transformation using the commands

[numd, dend] = bilinear(numden, 1/ 1)
where T isthe sampling frequency. To use the step invariant method, use the commands
[nund, dend] = c2dm(num den, T, zoh’)

To simulate the response of a continuous-time plant with a digital controller, use the command
hybri d, which is available at the MathWorks ftp site. Consider the block diagram in Figure
11.25. The numerator and denominator coefficients of the plant are stored in NGp and DGp; the
numerator and denominator coefficients of the controller are stored in NGd and DCd; the
reference input signal isstored in r ; and the sampling time is stored in T. The increments in the
time vector should selected to be the sampling time divided by an integer, for example, t =
0: b: Tend wherethereis someinteger m such that bm=T. The command is used as

23

[y,ud] = hybrid(NG, D&, N&d, DA, T,t,r);

The outputs of the command are the system response, y, and the control signa that is input to the
plant, ud. The M-file contains aloop which computes the discrete-time control and then smulates
the continuous-time plant for T seconds with the constant control. The process repeats for the next
T second interval. The commandsfor hybr i d are given below:

function [Y,UD] = hybrid(Np,Dp,Nd,Dd, T,t,U);
[Ac, Bc, Cc, Dc] =t f 2ss(Np, Dp) ;
[Ad, Bd, Cd, Dd] =t f 2ss(Nd, Dd) ;

nsam = T/(t(2) t(1)); % # of integration pts per sanple
%initialize

Y = 0,

ub = 0;

[ncr, ncc] = size(Ac);

xc0 = zeros(ncr,1);

[ndr, ndc] = S|ze(AU)'

xdk = zeros(ndr, 1

kmax = flx(t(length(t))/T) % # of conplete sanples int

for k = 0: kmax-1
% cal cul ate control and output of zoh
ek = U k*nsam+l) - Y(k*nsamtl);
xd = Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;
xdk = xd;
% integrate continuous-tinme plant with input
% of zoh for T seconds
udi = zoh*ones(nsantl, 1);
ti = t(k*nsamtl: (k+1) *nsamtl);
[yi,xi] = IsinlAc, Bc, Cc, Dc, udi , ti, xc0);
xc0 = xi (nsanmtl, :);
% augnment vectors
Y =[Y;yi(2: nsam+l)];
UD = [UD; udi (2: nsamtl)] ;
end

i f (kmax*nsamtl < length(t))
% conmpute tail of simulation fromt(kmax*nsam
% tot_end
k = kmax;
% cal cul ate control and output of zoh
= U k*nsam+l) - Y(k*nsamtl);
xd = Ad*xdk + Bd*ek;
zoh = Cd*xdk + Dd*ek;
% integrate continuous-time plant with input of zoh
ti = t(k*nsam+l:length(t));
udi = zoh*ones(length(ti),1);
[yi,xi] = IsinlAc, Bc, Cc, Dc, udi , ti, xc0);

24

% augnment vectors
Y = [Y;yi(2:1ength(yi)
UD = [UD; udi (2: 1 engt h(
end

)15
udi))];

G. State Space Representation

Commands Covered: dl sim
dstep
di npul se

Most of the commands for the continuous time state space representation also work for the discrete
time state space. For example, ss2tf, tf2ss, and ss2ss for discrete time are used exactly
the same way as for the continuous time case discussed in Section 3.F. There is a discrete time
version of thecommand | si m which is used asfollows:

[y, x] =dlsimAB,CD,un);

where the output is stored in vy, the states are stored in X, the input is stored in u and the time
index isstored in n.

25

5. Plotting

Commands covered: pl ot

x| abel
yl abel
title
grid
axi s
stem
subpl ot

The command most often used for plotting is pl ot , which creates linear plots of vectors and
matrices, pl ot (t,y) plotsthevector t onthex-axisversusvector y onthey-axis. Thereare
options on the line type and the color of the plot which are obtained using plot(t,y,'option’). The
linetype options are -’ solid line (default), --’ dashed line, -.’ dot dash line, "’ dotted line. The points
in 'y can be left unconnected and delineated by a variety of symbols: + . * o x. The following
colors are available options:

r red

b blue
g green
W white
k black

For example, plot(t,y,’ --") usesadashedline, plot(t,y,’ *’) uses* a al the points
definedin t and y without connecting the points, and pl ot (t,y,’ g’) usesasolid greenline.
The options can aso be used together, for example, pl ot (t,y,’ g:') plotsadotted green line.

To plot two or more graphs on the same set of axes, use the command pl ot (t 1, y1,t2,y2),
which plots y1 versus t 1 and y2 versus t 2.

To label your axes and give the plot atitle, type
x|l abel ("tine (sec)’)
yl abel (’ step response’)
title(’My Plot’)

Finally, add agrid to your plot to make it easier to read. Type
grid

The problem that you will encounter most often when plotting functions is that MATLAB will
scale the axes in away that is different than you want them to appear. Y ou can easily override the
autoscaling of the axes by using the axi s command after the plotting command:

axi s([xmn xmax ymn ynax]);

26

where xm n, xmax, ym n, and ymax are numbers corresponding to the limits you desire for
theaxes. To return to the automatic scaling, smply type axi s.

For discrete-time signas, use the command st emwhich plots each point with a small open circle
and astraight line. To plot y[k] versusk, type

stenm(k,y)

Youcanusesten(k,y,’ filled) togetcirclesthat arefilled in. When using Version 3.0 of
the Signa Processing Toolbox (or version 4.0 of the Student Version of MATLAB), the following
must be done in order to get filled-in circles: Thelinein stem.m

h =plot(x,y, o ,xx(:),yy(:),linetype);
can be replaced with

h = plot(x,y, . ,xx(:

: (:),yy(:),linetype);
set (h, markersize',18);

to create closed circles.

To plot more than one graph on the screen, use the command subpl ot (mp) which partitions
the screen into an mxn grid where p determines the position of the particular graph counting the
upper left corner as p=1. For example,

subpl ot (211), sem | ogx(w, nagdb) ;
subpl ot (212), sem | ogx(w, phase);

plots the bode plot with the log-magnitude plot on top and the phase plot below. Titles and labels

can be inserted immediately after the appropriate sem | ogx command or pl ot command. To
return to afull screen plot, type subpl ot (111).

27

6. Loading and Saving Data

When using MATLAB, you may wish to leave the program but save the vectors and matrices you
have defined. To save the file to the working directory, type

save fil ename
where"f i | enanme" isaname of your choice. To retrieve the data later, type

| oad fil enane

28

