1. a) $\frac{d y}{d t}+6 y(t)=4 x(t)$

This is an ordinary differential equation with constant coefficients, therefore, it is linear and timeinvariant. It contains memory and it is causal.
b) $\frac{d y}{d t}+4 \operatorname{ty}(\mathrm{t})=2 \mathrm{x}(\mathrm{t})$

This is an ordinary differential equation. The coefficients of $4 t$ and 2 do not depend on y or x, so the system is linear. However, the coefficient $4 t$ is not constant, so it is time-varying. The system is also causal and has memory
c)

$$
y[n]+2 y[n-1]=x[n+1]
$$

This is a difference equation with constant coefficients; therefore, it is linear and time-invariant. It is noncausal since the output depends on future values of x. Specifically, let $x[n]=u[n]$, then $y[-1]=1$.
d) $y(t)=\sin (x(t))$
check linearity:

$$
\begin{aligned}
& \mathrm{y}_{1}(\mathrm{t})=\sin \left(\mathrm{x}_{1}(\mathrm{t})\right) \\
& \mathrm{y}_{2}(\mathrm{t})=\sin \left(\mathrm{x}_{2}(\mathrm{t})\right)
\end{aligned}
$$

Solution to an input of $a_{1} x_{1}(t)+a_{2} x_{2}(t)$ is $\sin \left(a_{1} x_{1}(t)+a_{2} x_{2}(t)\right)$.
This is not equal to $\mathrm{a}_{1} \mathrm{y}_{1}(\mathrm{t})+\mathrm{a}_{2} \mathrm{y}_{2}(\mathrm{t})$.
As a counter example, consider $\mathrm{x}_{1}(\mathrm{t})=\pi$ and $\mathrm{x}_{2}(\mathrm{t})=\pi / 2, \mathrm{a}_{1}=\mathrm{a}_{2}=1$
the system is causal since the output does not depend on future values of time, and it is memoryless the system is time-invariant
e) $\frac{d y}{d t}+y^{2}(t)=x(t)$

The coefficient of y means that this is nonlinear; however, it does not depend explicitly on t, so it is timeinvariant. It is causal and has memory.
f) $y[n+1]+4 y[n]=3 x[n+1]-x[n]$

Rewrite the equation as $y[n]+4 y[n-1]=3 x[n]-x[n-1]$ by decreasing the index.
This is a difference equation with constant coefficients, so it is linear and time-invariant. The output does not depend on future values of the input, so it is causal. It has memory.
9) $y(t)=\frac{d x}{d t}+x(t)$
innean?

$$
\begin{aligned}
x_{1}(t) & \longmapsto \frac{d x_{1}}{d t}+x_{1}(t)=y_{1}(t) \\
x_{2}(t) & \longmapsto \frac{d x_{2}}{d t}+x_{2}(t)=y_{2}(t) \\
a_{1} x_{1}+a_{2} x_{2} & \longmapsto \frac{d\left(x_{1}+x_{2} a_{2}\right)}{d t}+a_{1} x_{1}+a_{2} x_{2} \\
& =a_{1} \frac{d x_{1}}{d t}+a x_{1}+a_{2}\left(\frac{d x_{2}}{d t}+x_{2}\right) \\
& =a_{1} y_{1}+a_{2} y_{2}
\end{aligned}>\operatorname{linea} \quad l
$$

time invariant?

$$
\begin{aligned}
& x(t) \longmapsto y(t)=\frac{d x(t)}{d t}+x(t) \\
& x\left(t-t_{1}\right) \longmapsto \frac{d x\left(t-t_{1}\right)}{d t}+x\left(t-t_{1}\right)
\end{aligned}
$$

let $\tau=t-t_{1}$

$$
\begin{aligned}
& d \tau=d t \\
& \frac{d x(\tau)}{d t}=\frac{d x(\tau)}{d \tau} \frac{d \tau}{d t}=\frac{d x(\tau)}{d \tau}
\end{aligned}
$$

so $\frac{d x\left(t-t_{1}\right)}{d t}+x\left(t-t_{1}\right)=\frac{d x(\tau)}{d \tau}+x(\tau)$
now consider $y\left(t-t_{1}\right)=y(\tau)=\frac{d x}{d \tau}(\tau)+x(\tau)$ given same answer \Longrightarrow Fime-in variant by inspection, causal a has memory
h) $y[n]=x[2 n]$
has memory since the output relies on values of the input at other the the current index n,
causal? Let $x[n]=u[n-2]$, so $x[1]=0$. Then $y[1]=x[2]=1$, so not causal.
linear? Let $y_{1}[n]=x_{1}[2 n]$ and $y_{2}[n]=x_{2}[2 n]$. The response to an input of $x[n]=a x_{1}[n]+b x_{2}[n]$ is $\mathrm{y}[\mathrm{n}]=\mathrm{ax}_{1}[2 \mathrm{n}]+\mathrm{bx}_{2}[2 \mathrm{n}]$, which is $\mathrm{ay}_{1}[2 \mathrm{n}]+\mathrm{by}_{2}[2 \mathrm{n}]$, so this is linear
time-invariant: Let $\mathrm{y}_{1}[\mathrm{n}]$ represent the response to an input of $\mathrm{x}[\mathrm{n}-\mathrm{N}]$, so $\mathrm{y}_{1}[\mathrm{n}]=\mathrm{x}[2(\mathrm{n}-\mathrm{N})]$. This is also equal to $\mathrm{y}[\mathrm{n}-\mathrm{N}]$, so the system is time-invariant.
i) $y[n]=n x[2 n]$

This is similar to part h), except for the n coefficient. Similar to above, it is noncausal, has memory and is linear. Check time-invariance:

Let $y_{1}[n]$ represent the response to an input of $x[n-N]$, so $y_{1}[n]=n x[2(n-N)]$. This is not equal to $y[n-N]=(n-N) x[2(n-N)]$, so the system is time-varying.
j) $\frac{d y}{d t}+\sin (t) y(t)=4 x(t)$

This is an ordinary differential equation with coefficients $\sin (\mathrm{t})$ and 4 . Neither depends on y or x , so it is linear. However, the explicit dependence on t means that it is time-varying. It is causal and has memory.
k) $\frac{d^{2} y}{d t^{2}}+10 \frac{d y}{d t}+4 y(t)=\frac{d x}{d t}+4 x(t)$

This is an ordinary differntial equation with constant coefficients, so it is linear and time-invariant. It is also causal and has memory.
2. The response to $4 u(t)$ is $4\left(1-e^{-2 t}\right) u(t)$. The response to $4 u(t-1)$ is $4\left(1-e^{-2(t-1)}\right) u(t-1)$. So the response to $\mathrm{x}(\mathrm{t})=4 \mathrm{u}(\mathrm{t})-4 \mathrm{u}(\mathrm{t}-1)$ is $\mathrm{y}(\mathrm{t})=4\left(1-\mathrm{e}^{-2 t}\right) \mathrm{u}(\mathrm{t})-4\left(1-\mathrm{e}^{-2(t-1)}\right) \mathrm{u}(\mathrm{t}-1)$.

