Problem 1 (20 points):

In each case, create a switch level implementation for F using n-type and p-type transistors. Assume that both the inputs and their complements are available. Your design should contain no shorts and no floats.

a) \(F = \overline{A}B + A\overline{B} \)

b) \(F = A + \overline{B}CD \)
Problem 2 (30 Points):

Implement the following logical expressions using a gate level design. Use mixed logic for the design procedure. In each case, state the number of transistors used for the design.

a) $F = \overline{AB(C + AD)}$, implement using NAND gates and NOT gates

b) $F = (X + Y)WZ$, implement using NOR gates and NOT gates

$4 \times 4T + 4 \times 2T = 24T$

$3 \times 4T + 4 \times 2T = 20T$
Problem 3 (30)

Use a Karnaugh map to find the simplest SOP expression for each of the following expressions.

a) \(F(A,B,C,D) = \Sigma m(0,1,3,5,7,9,11,12,14) \)

\[
\begin{array}{c|c|c|c|c}
& 00 & 01 & 11 & 10 \\
\hline
00 & \text{1} & \text{1} & \text{1} & \text{1} \\
01 & \text{1} & \text{1} & \text{1} & \text{1} \\
11 & \text{1} & \text{1} & \text{1} & \text{1} \\
10 & \text{1} & \text{1} & \text{1} & \text{1} \\
\end{array}
\]

Prime Implicant	Essential?
\(\overline{BC} \) | \(Y \)
\(\overline{AC} \) | \(Y \)
\(\overline{AB} \) | \(N \)

Simplified SOP: \(\overline{BC} + \overline{AC} \)

b) \(F(A,B,C,D) = \Sigma m(1,3,4,5,6,7,9,11,12,13,14,15) \)

\[
\begin{array}{c|c|c|c|c}
& 00 & 01 & 11 & 10 \\
\hline
00 & \text{1} & \text{1} & \text{1} & \text{1} \\
01 & \text{1} & \text{1} & \text{1} & \text{1} \\
11 & \text{1} & \text{1} & \text{1} & \text{1} \\
10 & \text{1} & \text{1} & \text{1} & \text{1} \\
\end{array}
\]

Prime Implicant	Essential?
\(B \) | \(Y \)
\(\overline{AB} \) | \(Y \)

Simplified SOP: \(B \lor \overline{AB} \)
c) \(F(A,B,C,D) = \Sigma m(2,3,7,10) \)

<table>
<thead>
<tr>
<th>AB</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Prime Implicant

- \(\overline{A} \overline{B} \overline{C} \)
- \(BCD \)
- \(\overline{A} \overline{C} \overline{D} \)

Essential?

- \(Y \)
- \(N \)
- \(Y \)

Simplified SOP:

\(\overline{A} \overline{B} \overline{C} + A \overline{C} \overline{D} \)
Problem 4 (21 Points):

Perform the following conversions:

\[
\begin{align*}
110101_2 &= \frac{53}{32 + 16 + 4 + 1} \\
01101010_2 &= \frac{35}{3} \\
7C_{16} &= \text{011111000100}_2 \\
35F_{16} &= \frac{863}{10} \\
184_{10} &= \text{10110000}_2 \\
110110.101_2 &= \frac{36.4}{8} \\
110110.101_2 &= \frac{546.25}{10}
\end{align*}
\]
Problem 1 (20 points):

In each case, create a switch level implementation for F using n-type and p-type transistors. Assume that both the inputs and their complements are available. Your design should contain no shorts and no floats.

a) $F = \overline{ABC}$

b) $F = AB(C + \overline{D})$

(a) $F = \overline{A} + \overline{B} + C$

(b) $F = AB \overline{C} \overline{D}$
Problem 2 (30 Points):

Implement the following logical expressions using a gate level design. Use mixed logic for the design procedure. In each case, state the number of transistors used for the design.

a) $F = A + B(C + AD)$, implement using NAND gates and NOT gates

b) $F = \overline{XY} + WZ$, implement using NOR gates and NOT gates

\[
\begin{align*}
\text{a) } & \quad 4 \times 4T + 7 \times 2T = 30T \\
\text{b) } & \quad 3 \times 4T + 4 \times 2T = 20T
\end{align*}
\]
Problem 3 (30)

Use a Karnaugh map to find the simplest SOP expression for each of the following expressions.

a) \(F(A,B,C,D) = \Sigma m(0,1,2,3,9,11,12,14) \)

\[
\begin{array}{cccc}
\text{CD} & 00 & 01 & 11 & 10 \\
\hline
\text{AB} & 00 & \circ & \circ & \circ \\
 & 01 & \circ & \circ & \\
 & 11 & \circ & \\
 & 10 & \circ & \\
\end{array}
\]

Prime Implicant	Essential?
\(\overline{BD} \) | \(\checkmark \)
\(\overline{AB} \) | \(\checkmark \)
\(\overline{A} \) |
\(\overline{B} \) |

Simplified SOP: \(F = \overline{B}D + \overline{A} \overline{B} \)

b) \(F(A,B,C,D) = \Sigma m(1,3,4,5,6,7,9,11,12,13,14,15) \)

\[
\begin{array}{cccc}
\text{CD} & 00 & 01 & 11 & 10 \\
\hline
\text{AB} & 00 & \circ & \circ & \circ \\
 & 01 & \circ & \circ & \\
 & 11 & \circ & \\
 & 10 & \circ & \\
\end{array}
\]

Prime Implicant	Essential?
\(D \) | \(\checkmark \)
\(B \) | \(\checkmark \)

Simplified SOP: \(F = D + B \)
c) \(F(A, B, C, D) = \Sigma m(2, 3, 7, 10) \)

<table>
<thead>
<tr>
<th>AB</th>
<th>CD</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td></td>
<td>(\square)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>01</td>
<td></td>
<td></td>
<td>(\square)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>(\square)</td>
<td></td>
</tr>
</tbody>
</table>

Prime Implicant

<table>
<thead>
<tr>
<th>Prime Implicant</th>
<th>Essential?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{A}BC)</td>
<td>(N)</td>
</tr>
<tr>
<td>(\overline{A}CD)</td>
<td>(Y)</td>
</tr>
<tr>
<td>(\overline{B}CD)</td>
<td>(Y)</td>
</tr>
</tbody>
</table>

Simplified SOP: \(F = \overline{A}CD + \overline{B}CD \)
Problem 4 (21 Points):

Perform the following conversions:

\[101101_2 = \frac{45}{10} \]

\[110111_2 = 37 \]

\[7B_{16} = 0111\ 1011\ 0011 \]

\[35F_{16} = 863 \]

\[143_{10} = 10001\ 111 \]

\[111110,101_2 = 3E.A_{16} \]

\[111110,101_2 = 62.625_{10} \]

\[32 \]

\[8 \]

\[4 \]

\[2 \]

\[6.2 \]

\[32 \]

\[16 \]

\[8 \]

\[4 \]

\[2 \]

\[6.25 \]

\[0.125 \]

\[\frac{5}{15} \]

\[\frac{-8}{7} \]

\[\frac{-4}{3} \]

\[\frac{-2}{1} \]