1. Sketch the response of each of the systems below to a step input.

 a) \(H(s) = \frac{10}{s+2} \)

 b) \(H(s) = \frac{0.2}{s+0.2} \)

2. Given, the two step responses shown below, the first one is a first order system and the second one is a second order system. Determine the transfer functions for both systems.

3. Plot the pole positions for each of the following systems, determine the values for \(\zeta \) and \(\omega_n \) for the stable second order systems with complex poles.

 a) \(H(s) = \frac{1}{s+4} \)

 b) \(H(s) = \frac{1}{s+10} \)

 c) \(H(s) = \frac{1}{s^2 + 4s + 3} \)

 d) \(H(s) = \frac{1}{s^2 + 4s + 16} \)

 e) \(H(s) = \frac{1}{s^2 + 4s + 2} \)

 f) \(H(s) = \frac{1}{s^2 - 4s + 16} \)

4. Give the general form of the response of the systems in Problem 3 to a step input.

5. Determine the steady-state response of the systems in Problem 3 a), d), and f) to an input of \(x(t) = 2 \cos(4t-20^\circ)u(t) \).